
Search Algorithms,
Trees, and Graphs 

Part I
Anton Gerdelan <gerdela@scss.tcd.ie>

mailto:gerdela@scss.tcd.ie

General Trees
• Node - item in the tree

• Branch - link connecting nodes

• Sub-tree - part of tree that is also a tree

• Root - the node with no parent

• Leaf - nodes with no children

• Siblings - children of same parent

• Levels - Number of rows

• Null tree - nothing in tree

• Tree is either

• a null tree

• a root with several sub-trees

university

science humanitiesbusiness

accounting mgmt. history

level

1

2

3
siblings

branch

root

sub-tree

leaf

Typical Tree Operations
• data(Node* N) - return value of data in a node

• parent(Node* N) - return pointer to parent

• leftmost_child(Node* N)

• return pointer to furthest left child of N

• right_sibling(Node* N)

• insert_child(Node* N, data)

• make a new node with data and make it leftmost child of N

• is_empty() - return true if tree empty

• How many pointers will your tree Node have?

Searching for Data in a Tree
• An algorithm that visits each node once - tree traversal - and compares contents to sought value

• traversal ops: V - visit / look at node, L - left sub-tree, R - right sub-tree

• Pre-order: V, L to R

1. look at data in root

2. recurse all subtrees from left to right

• In-order: L, V to R

1. recurse leftmost subtree

2. look at root of current sub-tree

3. recurse remaining subtrees to rightmost subtree

• Post-order: L to R, V

1. recurse all subtrees from left to right

2. look at root

Traversal
• Using recursion

• Pre-Order: VL to R

• A B C D E F

• In-Order: LV to R

• B A D C E F

• Post-Order: L to RV

• B D E C F A

• Some traversals more useful than
others depending on situation

• recall BSP

A

C FB

D E

"General Tree"
Implementation

• Q. Remember how to implement
a tree using arrays?

• Any number of children

• Using pointers a tree is similar to
a linked list

• leftmost child pointer

• right sibling pointer

• A limited tree with fixed number
of children would be easier

A

B C F

D E

Binary Trees
• 2 branches or less per node

• traversals only have 2 sub-
trees

• VLR (pre order), LVR (in-
order), LRV (post-order)

• writing a function to add a new
node is a little tricky (as with
linked lists)

• tutorial?

struct Tree_Node;  
struct Tree_Node {  
 char data;  
 Tree_Node *left, *right;  
};  
 
Tree_Node *root = (Tree_Node*)malloc( 
 sizeof(Tree_Node));  
root->data = 'A';  
root->left = NULL;  
root->right = NULL;  

Arithmetic Trees
• construct tree to represent arithmetic expression  

a * (b + c) / (m - 2)

• set up sub-tree for each set of brackets

+

cb

-

2m

subtree 1 subtree 2

Arithmetic Trees
• a * (b + c) / (m - 2)

*

a

/

subtree 1

subtree 3

subtree 3 subtree 2

finally

Arithmetic Trees
• Q. in-order traversal generates: … ? (that's L,V,R)

/

*

a

-

2m+

cb

see also: Reverse Polish Notation

Binary Search Tree (BST)

• uses a binary tree

• data stored in any node is unique

• any data in left subtree is less than root

• any data in right subtree is greater than root

• left and right subtrees are also binary trees

Balance
• A binary tree is perfectly

balanced if

• total nodes in left and right
trees differs by max 1

• levels in left and right trees
differs by max 1

• To find if 80 is in this tree:

• compare: 20, 30, 80

20

18

2

30

8022

2 3

1 11 0

0 0 0 0 0 0

Balance

• Not balanced, but still a binary
search tree:

• 6 comparisons needed to
find 80

• Search on BST

• worst case O(n)

• average case O(log n)

20

18

2

30

80

22

Balance
• A tree will be balanced if we insert values in particular order

• 20, 18, 30, 2, 22, 80 - first tree

• 2, 18, 20, 22, 30, 80 - second tree

• If we sort the data into a list or array first we can create a perfectly
balanced tree:

• 2, 26, 30, 34, 56, 60, 65, 70, 80, 94, 96, 98, 99

• Then we can choose the mid value - 65 - insert that first, split into a
left and right list - choose mids of those, and so on.

• so insertion order will be 65, 30, 2, 26, 56, 34, 60…

