Search Algorithms,
Trees, and Graphs
Part |

Anton Gerdelan <gerdela@scss.tcd.ie>

mailto:gerdela@scss.tcd.ie

(General Trees

Node - item in the tree |eve|
Branch - link connecting nodes

ink ¢ ing root
Sub-tree - part of tree that is also a tree university 1

Root - the node with no parent / ‘ \ sub-tree

business science = humanities 2
Leaf - nodes with no children leaf
brancy \ ‘
Siblings - children of same parent
Levels - Number of rows accounting mgmt. history

Null tree - nothing in tree siblings
Tree is either

e anull tree

e a root with several sub-trees

Typical Tree Operations

data (Node* N) - return value of data in a node
parent (Node* N) - return pointer to parent
leftmost child(Node* N)
e return pointer to furthest left child of N
right sibling(Node* N)
insert child(Node* N, data)
e make a new node with data and make it leftmost child of N

is _empty () - return true if tree empty

How many pointers will your tree Node have?

Searching for Data in a Tree

An algorithm that visits each node once - tree traversal - and compares contents to sought value

traversal ops: V - visit / look at node, L - left sub-tree, R - right sub-tree

Pre-order: V,Lio R
1. look at data in root

2. recurse all subtrees from left to right

In-order: L, Vio R
1. recurse leftmost subtree
2. look at root of current sub-tree

3. recurse remaining subtrees to rightmost subtree

Post-order: Lto R, V

1. recurse all subtrees from left to right

2. look at root

Iraversal

Using recursion

Pre-Order: VLto R
- ABCDEF
In-Order: LV to R

« BADCEF
Post-Order: L to RV
« BDECFA

Some traversals more useful than
others depending on situation

e recall BSP

AR
D/\E

‘General Tree'
Implementation

Q. Remember how to implement
a tree using arrays”

Any number of children

Using pointers a tree is similar to
a linked list

* |eftmost child pointer

* right sibling pointer

A limited tree with fixed number
of children would be easier

A‘/
é/—*C‘—W://
o/ Hel/l/

Binary lrees

2 branches or less per node

traversals only have 2 sub- struct Tree Node;
trees struct Tree Node {

char data;
Tree Node *left, *right;

VLR (pre order), LVR (in- bi
order), LRV (post-order)

Tree Node *root = (Tree Node*)malloc (
sizeof (Tree Node));

writing a functionto add a new root->data = 'A%;
root->left = NULL;

node is a little tricky (as with S0y —srignt - noLL;
linked lists)

e tutorial?

Arithmetic lrees

* construct tree to represent arithmetic expression
a*b+c)/(m-2)

* set up sub-tree for each set of brackets

NN

subtree 1 subtree 2

Arithmetic lrees

e a*(b+c)/ (m-2)

()
S

subtree 1

()
RN

subtree 3

subtree 3

subtree 2

finally

Arithmetic lrees

e Q. in-order traversal generates: ... ? (that's L,V,R)

*/ / \
N
b‘/ \C

see also: Reverse Polish Notation

Binary Search Tree (BST)

* uses a binary tree

* data stored in any node Is unigque

* any data in left subtree is less than root

* any data in right subtree is greater than root

* |eft and right subtrees are also binary trees

Balance

* A binary tree is pertectly
balanced if

20
* total nodes in left and right /2 Ngo
trees differs by max 1 18
/] O 22% N8O

* levels in left and right trees 2

differs by max 1 0 0 e 00
e o find if 80 is in this tree:

* compare: 20, 30, 80

Balance

2

Not balanced, but still a binary \.18
search tree: \

* 6 comparisons needed to 20\

find 80
22

Search on BST \30

* worst case O(n) \
80

 average case O(log n)

Balance

o A tree will be balanced if we insert values in particular order
e 20, 18, 30, 2, 22, 80 - first tree
e« 2,18, 20, 22, 30, 80 - second tree

* |f we sort the data into a list or array first we can create a pertectly
balanced tree:

¢ 2, 26, 30, 34, 56, 60, 65, 70, 80, 94, 96, 98, 99

e Then we can choose the mid value - 65 - insert that first, split into a
left and right list - choose mids of those, and so on.

e SO Insertion order will be 65, 30, 2, 26, 56, 34, 60...

